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The spherically symmetric flows of an ideal gas are considered assuming that Newtonian gravitation 

acts on the mass of gas. The problem of the decay of a special discontinuity is investigated by the 

method of characteristic series, and exact solutions of the initial boundary-value problems of the non - 

linear integrodiffereotiat partial-differential system are constructed in the form of converging series. It 

is proved that the particles of gas on the free gas-vacuum surface move as particles in the field of 

attraction of a material point situated at the ceotre of symmetry and having a mass equal to the initial 

mass of gas. In the case when the gas and the vacuum are continuously adjacent to one another one can 

prove a theorem of the existence and uniqueness of the solution for only rational adiabatic indices, and 

one can show that for certain values of the gas-dynamic parameters the gas sphere disperses to infinity, 

while in other cases the gas-vacuum boundary stops and the mass of gas begins to collapse. 

Singularities of the solution on this boundary only appear at the instant of focusing, which can be 

treated as the instant when the whole mass of gas collapses into the centre of gravity. 

Problems similar to one mentioned have been considered previously, but without taking 
gravitation into account. Using characteristic series in the neighbourhood of the boundary I, 
two-dimensional flows [l] and three-dimensional flows of an ideal gas adjacent to a region of a 
gas at rest were constructed. The decay of an arbitrary discontinuity on a curvilinear surface 
when the discontinuity in the gas density was greater than zero on both sides of the surface was 
considered in [2]. By analysing the first terms of certain asymptotic expansions it was 
concluded [3] that the free surface I, moves with constant velocity for a certain time. The flow 
that occurs as a result of the collapse of a one-dimensional cavity was investigated in [4]. When 
1 <y ~3 the solution was constructed in the form of converging characteristic series in the 
region from I, to I,, inclusive, and it was proved that the surface I, moves with constant 
velocity for a certain time. This result was generalized to the case of two- and three- 
dimensional flows in [S], and to three-dimensional flows when external mass forces act in [6]. 

In the case of a gravitating gas, adiabatic motions with uniform deformation, when the 
velocities are linear functions of the coordinates, have been investigated in a large number of 
publications. An accurate solution for the spherically symmetric motion of a gravitating gas 
with varying density was obtained in explicit form in [7]. The dynamics of the adiabatic 
motions of a gravitating gaseous ellipsoid were investigated in [8]. 
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1. FORMULATKON OF THE PROBLEM OF.THE DECAY OF A SPECIAL 
DISCONTINUITY 

Suppose that at an instant t=O a sphere r of radius #’ isolates from a vacuum an ideal 
polytropic gas which gravitates in accordance with Newton’s law. At the instant t = 0 we know 
the distributions of the gas parameters in the sphere: u = u,,(t) is the gas velocity, P = P&x) is the 
gas density, and S = S,(x) is the entropy, where x is the distance to the centre of the sphere I, 
0 6 xc r”. The functions %, So, and p0 are assumed to be analytic, and the gas density is 
assumed to be greater than zero everywhere in the sphere, including pa(x) I r > 0. 

At the instant t = 0 motion of the gas begins, determined by these distributions u,, So, and 
p. and which will henceforth be called background flow. Simultaneously, at the instant t = 0, 
the surface l? is instantaneously demolished and part of the gravitating ideal gas begins to 
disperse into the vacuum. The perturbations that occur in the background flow as a result of 
the instantaneous removal of the surface I, propagate in the gas in the form of a rarefaction 
wave, separated from the background flow by the boundary I,, which is a surface of weak 
discontinuity. The rarefaction wave touches the vacuum from the other side: p I,= 0, where I,, 
is the free surface which separates the rarefaction wave from the vacuum. It is required to 
construct both the background flow and the 
motion of I and I,. 

The spherically sy~etric flows of the gas 
of equations [9] 

rarefaction wave, and also to obtain the laws of 

considered are described by the following system 

p,+(pu,+2pu/x=O 

1 
ut +uu, i-px = F(x, t). 

P 
(1.1) 

s, + us, =O, p=S2pyJy, y=const>l 

wherep is the pressure and G is the gravitational constant. 
To simplify our further analysis we will change from the system of integro-differential 

equations (1.1) to a system of differential equations by intr~ucing an additional u~nown 
function F(x, t). Differentiating F with respect to x and t and taking the equation of continuity 
into account, we obtain two differential equations for F 

F * = -2r’F + 4ltcp, FI = 4tipu (1.2) 

We can also take M = -x2Gm1F(t, n) as the new ~known f~c~on, and the equations for 2M 
will then have the form 

hi, = 47~ 2p, M, = -4m2pu (1.3) 

We will use the function F and lZqs (1.2) in the problem of the decay of the discon~nuity. 
Moreover, we will also use Eqs (1.3). System (1.1) and (1.2) obtained is overdefined: there are 
five equations for four unknowns, but it can be shown by cross differentiation that it is 
consistent. 

It is convenient to take o = P(~-~)” as the unknown function instead of p. To construct the 
background flow we need to solve the Cauchy problem for the system considered with the 
following initial data 

r=o, u=a&,), S=S&), o=qM 0.4) 

F = Fe(x) = -+[r*p,(r)dr 



Spherically symmetric escape of a self-gravitating ideal gas into a vacuum 269 

If p,,(x) is an analytic function, it can be shown that &(n) is also an analytic function, which 
has no discontinuity at x =O. Since the system considered is a system of the Cauchy- 
Kovalevskii type while the initial data are analytic functions, the Cauchy problem has an 
analytic solution for small t [lo], which can be represented, for example, in the form of 
converging series in powers of t with coefficients which are analytic functions of X. Using this 
solution one can uniquely construct (for example, in the form of series in powers of t) xl(t) and 

0 r, = sow, uJq= uO(t), sIrI = SO(t) (l-5) 

Here xl(t) is the law of motion of the surface of the weak discontinuity I,, which is the sonic 
characteristic of the background flow, and o”, u”, So are the values of the gas-dynamic 
parameters in it. Henceforth we will assume that we know the following: the background flow, 
the surface I,, and cr’, u”, So. To construct the rarefaction wave we will make the following 
replacement of variables: we will take t and o as the independent variables, and we will take X, 
u, S and F as the unknown functions. The Jacobian of this transformation J = x0. We then 
obtain the following system of equations 

X#t - 
Y&(y_I)x u uo+ 2 

2 rJ 00 = x,F 
X 

x& +(u-X‘)S, =o (1.6) 

F; = -2x-‘n,F + 4xG(u - x,)o~‘(~-‘) 

The flow in the region between I, and I-, (the rarefaction wave) will be constructed as the 
solution of system of (1.6) with the data on the characteristic I, (1.5). Since r, is a character- 
istic of multiplicity one, to obtain a unique locally analytic solution we need to specify one 
additional condition [ll]. If the surface I is removed slowly, the following relation serves as 
this condition in the space of variables (6, t) [4-6] 

x(0, 0) = r” (1.7) 

2. CONSTRUCTION OF THE RAREFACTION WAVE 

Theorem 1. When 0 c t < to, in a certain neighbourhood of r, there is a unique locally 
analytic solution of problem (lS)-(1.7) on the decay of the discontinuity. 

The proof of the theorem reduces [4-61 to the corresponding analogue of the Cauchy- 
Kovalevskii theorem [ll]. 

To investigate the question of whether the surface IO lies in the region in which this solution 
is applicable, we will expand the solution of problem (lS)-(1.7) in series in powers of t 

f(t, CT)= Cf#)t’ lk! f ={x, u, S, F} (2.1) 

which, for small t, is possible in view of the analytic form of the solution of the problem of the 
decay in a certain neighbourhood of I,. Here and henceforth the summation is carried out 
over k from zero to infinity. 

We will put t = 0 in (1.6) and, taking (1.7) into account, we will have 

2 
x, =-2czos,+u*, u, =-- 

. Y-l 
G)+u*, So = SW = So(ro) 
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2 

u, y-l 
=-S&G)Q@)+i40(ro), 2a=5 

4 = AF u - 2aSoa) - 41cGS~o*~ ro o( * 

G 
F, = -47c~ ‘p 

(r) 0 

?po(r)dr 

We differentiate (1.6) k times with respect to c, put t = 0, and taking (1.7) and the expressions 
previously obtained for &(a) (0 s 1 c k) into account, we have 

xk+l 
=,,+I$ 

=“ko + G,, (‘J) 

33S -akuk = G2k(“). OS, -Saks, = G3k(~), 4+1 = Gdk(@ 

Here Glk, . . . , Gdk are functions which depend on &(a) (0~ 1 <k), but they will not be 
given here in view of their complexity. 

Integrating the second and third equations of the system we obtain 

Uk = a&(uk, + j G2, (O)t??iG) 

Sk = 02& (Sk,, + j G,, (o)CJ-2a-‘d@ 
(2.2) 

The arbitrary constants ukO and S,, are found from conditions (1.5). To do this we substitute 
a“(t) into the right-hand side of (2.2), and u’(t) and S”(t) into the left-hand sides. Expanding 
the expressions obtained in powers of t and equating the coefficients of like powers we obtain 
relations from which u,, and S,, are uniquely determined. 

Lemma. When 1 c y c 3 the coefficients of series (2.1) when k a 1 have the form 

where &, . . . , Pdk are polynomials of the arguments indicated, and h > 0, a, = const. 
The proof of the lemma is similar to the corresponding proof from [4-6] and is carried out 

by induction over k. It is first proved that G,k(a) possess the required structure, and it is then 
shown by direct integration that u, possess the structure indicated. 

On the basis of the lemma we can assert that the structure of the solution which specifies the 
rarefaction wave, is as follows: 

S = cd (r, a), x = xO(t)+d(t, CT) 

u = uO(t)+cd(t, CJ), F = @(t)+crF’(t, a) 

Here 

~(t)=~$tk /k!, uG(t)=z++,tk+l l(k+l)! 

x’(t) = I: at+*tk+* / (k + 2)! 

The convergence of the series for F”(t), u’(t), x’(t), like the convergence of all the series 
(2.1), is established by the following theorem. 
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Theorm 2. For 1 c y < 3 when 0 e d c to the region of convergence of series (2.1), and also of 
the series which specify f, and f,, covers the whole flow region from p, to P,, inclusive. The 
law of motion of I’, :x== x”(j) is then found from the solution of the auxiliary problem 
Xp = u”(t), X0(O) = r” 

(2.3) 

and the initial value of the entropy S IrO= S,(x) k= S&O) is conserved on the surface pO-,. 
The proof of the theorem is similar to the proof in [4-h;], 
An analysis of the coefficients of series (2.1) shows that x0(@ can also be obtained without 

~ons~ucting the whole solution of problem (1.5)-(1.7), It is sufficient to construct the solution 
of the auxiliary problem (2.3) in the form of a formal series in powers of t . Since x0(0) = r* > 0, 
problem (2.3) has a unique locally analytic solution, which once again proves the convergence 
of the series specifying x”(t). A detailed investigation of problem (2.3) will be carried out 
below. 

3. THE PROBLEM OFA GAS CONTINUOUSLY ADJACENT TO A VACUUM 

In order to determine the instant of time up to which the law of motion of r, is conserved, 
we will investigate the problem of a gas that is continuously adjacent to a vacuum. If we have 
the solution of the problem of the decay of a di~~onti~~ty, i.e. if we know, in particular, the 
quantities o(t,, n), EL(E~~ x), S(r,, n), and a(z,, X) Ir,= 0 at the instant t = to > 0, we can postulate 
the Cauchy problem at t = to with these initial data for system (1.1) and (1.3). If the solution of 
this problem exists, we can use it to determine the law of motion of I’, in implicit form o(t, 
x)=0 when t>t,. Here it is natural to assume that the ~rturbations that occur from the 
focusing of the weak discontinuity or from possible strong di~ontin~ties in the middle part of 
the flow, do not reach IQ 

Suppose x = x,,(t) is the law of motion of the free surface I,, obtained from the solution of 
system (2.3). We will introduce the new independent variable t = X- x0(t), i.e. we will take the 
surface IO as the coordinate axis z = 0, System (1.1) and (1.3) can then be rewritten in the form 

s,+(u-x@t)st =o, M, =47t(Z+XfJ)2c.T2t(‘g-f~ 

We specified the following conditions for system (31) on the surface lYo for z = 0 

a(t* 0) = 0, u(t, 0) = uO(t), S(S, O)= s,, M(t, 0) = M, (3.2) 

Here M, is the initial mass of gas S, =S@), and ~~~~~ is the velocity of motion of the 
surface I-, in the problem of the decay of the discontinuity. Problem (3.1), (3.2) is a 
characteristic Cauchy problem, and the multiplicity of the characteristic z = 0 is three. Hence, 
for the solution to be unique it is necessary [ll] to specify the initial data 

(T@& Z)’ oO(zX u@e,, z) = UOQ), S@Q* t)=s”tz) (3.3) 
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which agrees at the point I = I,, z = 0 with the data of (3.2). 
System (3.1) is not analytic for arbitrary y > 1, so that we cannot construct a sdution in the 

neighbu~ho~ of I?* which uses analogues of the gushy-Kovalevskii theorem. Nevertheless, 
we can write and investigate systems describing the behaviour of the gas-dynamic parameters 
and their derivatives with respect to the variable z at z = 0. 

We put z = 0 in (3.1), and, taking (3.2) into account, we will have the system 

(3.41 

which is equivalent to system (2.3) and is written using the mass of gas instead of F. This 
system describes the motion of r, and the behaviour of the gas-dynamic parameters on it. 
Integrating (3.4) using the initial conditions we obtain 

Hence we can conclude that if u.? 3 I.&, the gaseous sphere will expand to infinity; if u? < ZL?, 
then at t =t* the free surface r, stops at the point X, = X& - (u, /zL)~]“, and the mass of gas 
begins to collapse. The specific form of .u,(f) and t, wih not be given here because of its 
complexity. 

Integrating system (3.1) with respect to z and putting z = 0 we obtain a system of transport 
equations. 

After making the replacement of variable y = exp(t, y dt) we have 

The solution of the second equation of (3.5) will be sought for the initial data y(#*)= 1, 
Y&0) = ul(t,)* 

An analytic investigation of the solutions of system (3.5) involves considerable difficulties, 
so a solution was found by numerical methods. We obtained that both when the gas disperses 
to infinity, and when the initially dispersing gaseous sphere collapses, no singularities occur on 
the free surface, with the exception of the instant of time which can be treated as the instant 
when the whole mass of gas collapses. placations showed that the rn~rn~ of the derivative 
of the velocity of the gas on r,, with respect to x is reached later than the instant when the gas 
stops and when reverse motion of the free surface occurs (see Fig. l>_ 

It is impossible to construct systems describing the behaviour of the following derivatives of 
the gas-dynamic parameters on I, with respect to t for arbitrary values of y > 1, since in the 
fourth equation of system (3.1) negative powers of 6 appear after the differentiation with 
respect to z, Hence, analytic solution of the problem of a gas continuously adjacent to a 
vacuum can only be constructed for rational values of y, Then, without loss of generality, we 
can assume that 2/(y - 1) = m/n, where m and n are natural numbers. 

We will introduce a new unknown function C= a”“. Hence b= C”, (3, = nCn%,, 6, = 
rtC”-‘C,. Conditions (3-2) and (3.3) then become 

C(t,, z)=co(z), u(ro, z)=uO(z)r wo9 z)=SOW (3.7) 

System (3.1) converts into the analytic system 
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c, +(u-x& + ‘cu, +-- 2 cu =o 

n n z+xo 

Ut + (u - Xo,)Uz + ms2c2”-‘cz + 2 C%Sz + GA4 =() 
(z+xld2 

(3.8) 

S,+(u-Xo,)Sz =o, h4, =4R(Z+Xg)2Cm 

for which the following theorem holds. 

Theorem 3. For t,, c f ct. problem (3.6)-(3.8) has a unique locally analytic solution, which can 
be represented in the form 

g(t. z) = Xgk(t)zk 1 k!, g = (C, u, S, M) 

The proof of this theorem reduces to the corresponding analogue of the Cauchy- 
Kovalevskii theorem [ll]. Problem (3.6), (3.8) is the characteristic Cauchy problem with data 
on the characteristic of multiplicity three, and hence to construct a unique locally analytic 
solution we need to specify three additional conditions. These conditions are the initial data 
(3.7). 

To investigate problem (3.6)-(3.8) and to obtain the instants of time at which singularities 
occur on I,,, we will consider the equations for g&). 

We put z = 0 in system (3.8) and, using conditions (3.6), we obtain system (3.4) for g,,(t). 
We integrate system (3.8) with respect to z and put z = 0. We then obtain a system of trans- 

port equations 

If we introduce 
the form 

c,,+ l+’ 
( 1 

c,Ul + 
2 xh(Q _. -- 

n nxa(t) ‘- 

uif + u; = 2GMooxi3(r), S,, + u,Si = 0 (3.9) 

the new unknown function Y = exp(tO u, dt), the second equation will have 
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y, = 21u,x,-3(t)Y 

Integrating this we obtain 

Y=u,,(t)(A+Bi&). A, B=const 

At the instant of time t = t, the integral has a singularity, but the function Y = Y(t) itself at 
this instant of time is finite and has no singularities. Hence, we can conclude that the 
singularities of the solution of the system of transport equations are identical with the 
singularities of the solution of system (3.4), i.e. with the instant of focusing of the surface P,. 

Integrating system (3.8) with respect to z k times, putting z =0, and using (3.6) and the 
previously derived relations g,(o), (0 G 1 c k), we obtain 

+m, + (k + 1)~~ = Qzk (t), s, + (k + lb@, = Q3k (t) 

K+, = Q4, (t) 

(3.10) 

We will not give the specific form of the right-hand sides of the equations here in view of 
their length. 

Systems (3.10) are linear, and hence the singularities of the solutions of these systems are 
identical with the singularities of the solutions of system (3.4). Consequently, the law of motion 
of the free surface P, is conserved up to an instant of time which can be treated as the instant 
when the whole mass of gas collapses towards the centre of symmetry, if, of course, no 
singularities arise in the middle part of the flow. 

We wish to thank A. F. Sidorov and S. P. Bautin for-discussing this paper. 
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